Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology.
نویسندگان
چکیده
Synchronization of neural oscillations is thought to integrate distributed neural populations into functional cell assemblies. Epilepsy is widely regarded as a disorder of neural synchrony. Knowledge is scant, however, regarding whether ictal changes in synchrony involving epileptogenic cortex are expressed similarly across various frequency ranges. Cortical regions involved in epileptic networks also exhibit pathological high-frequency oscillations (pHFOs, >80 Hz), which are increasingly utilized as biomarkers of epileptogenic tissue. It is uncertain how pHFO amplitudes are related to epileptic network connectivity. By calculating phase-locking values among intracranial electrodes implanted in children with intractable epilepsy, we constructed ictal connectivity networks and performed graph theoretical analysis to characterize their network properties at distinct frequency bands. Ictal data from 17 children were analyzed with a hierarchical mixed-effects model adjusting for patient-level covariates. Epileptogenic cortex was defined in two ways: 1) a hypothesis-driven method using the visually defined seizure-onset zone and 2) a data-agnostic method using the high-frequency amplitude of each electrode. Epileptogenic cortex exhibited a logarithmic decrease in interregional functional connectivity at high frequencies (>30 Hz) during seizure initiation and propagation but not at termination. At slower frequencies, conversely, epileptogenic cortex expressed a relative increase in functional connectivity. Our findings suggest that pHFOs reflect epileptogenic network interactions, yielding theoretical support for their utility in the presurgical evaluation of intractable epilepsy. The view that abnormal network synchronization plays a critical role in ictogenesis and seizure dynamics is supported by the observation that functional isolation of epileptogenic cortex at high frequencies is absent at seizure termination.
منابع مشابه
Title: Neocortical Pathological High Frequency Oscillations Are Associated with 1 Frequency-dependent Alterations in Functional Network Topology 2 3
47 Synchronization of neural oscillations is thought to integrate distributed neural 48 populations into functional cell assemblies. Epilepsy is widely regarded as disorder of 49 neural synchrony. Knowledge is scant, however, regarding whether ictal changes in 50 synchrony involving epileptogenic cortex are expressed similarly across various 51 frequency ranges. Cortical regions involved in epi...
متن کاملSelective Coupling between Theta Phase and Neocortical Fast Gamma Oscillations during REM-Sleep in Mice
BACKGROUND The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to lo...
متن کاملSpatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex.
We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventiona...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملSimulation of Single Conductors Galloping Oscillations and Estimation of their Maximum Amplitudes
Overhead transmission lines are influenced by different factors which are mostly electrical and mechanical. These factors can cause problems for lines, distortions in network and outage of line. In designing transmission lines mechanical properties are evaluated after selecting a suitable conductor and clearance with regard to electrical properties. In lines designing, an important mechanical p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 110 10 شماره
صفحات -
تاریخ انتشار 2013